NAME OF DEPARTMENT/CENTRE: Department of Electronics and Communication Engineering

- 1. Subject Code: ECN-501 Course Title: Electromagnetic Field Theory and Scattering
- **2.** Contact Hours: L: 3 T: 1 P: 0
- **3. Examination Duration (Hrs.):** Theory: 3 Practical: 0
- **4. Relative Weightage: CWS:** 20-35 **PRS:** 0 **MTE:** 20-30 **ETE:** 40-50 **PRE:** 0

7. Subject Area: PCC

- **5.** Credits: 4 **6.** Semester: Autumn
- 8. Pre-requisite: Nil
- 9. Objective: To provide insight into electromagnetic field theory and scattering.
- **10. Details of the Course:**

S.No.	. Contents	
		hours
1.	Review of basic electromagnetics: Maxwell's equations, electromagnetic	7
	boundary conditions, Poynting vector, wave propagation, plane waves, reflection,	
	and transmission at material interface, surface impedance.	
2.	Waveguides and transmission lines: TEM mode in parallel plate waveguides,	12
	TE and TM modes in rectangular and circular metal waveguides, wave	
	impedances, dispersion and wave velocity, surface wave propagation in grounded	
	dielectric medium, TE and TM modes of surface waves, hybrid modes in	
	rectangular and circular dielectric waveguides, ridge and rib waveguides, concept	
	of plasmonic waveguides, surface spoof polariton waveguides.	
3.	Quasi-optical systems and techniques: Need for quasi-optical systems at	6
	millimeter-wave and terahertz frequency, geometrical optics, Gaussian beams,	
	Bessel beams, X-waves, working principle of Fabry-Perot resonator.	
4.	Canonical Scattering Problems: definition of the scattering problem, Stokes	12
	parameters, Mueller matrix, phase functions, scattering and absorption efficiency,	
	extinction, optical shadow theorem, plane wave expansion, spherical harmonics,	
	electromagnetic multipoles, Mie coefficients of a homogenous sphere, electric	
	and magnetic dipoles and directional scattering from isolated sphere, Rayleigh	
	scattering, Rayleigh-Gans approximation, plane wave scattering by conducting	
	and dielectric cylinder.	
5.	Advanced wave-matter interaction and their applications: concept of double	5
	negative metamaterials, evolution of metasurface, Fano resonance, toroidal	
	modes and electromagnetic cloaking.	
	Total	42

S.No.	Name of Authors/Book/Publisher	Year of Publication/ Reprint
1.	J. V. Bladel, "Electromagnetic Fields," IEEE Press Series on	2007
	Electromagnetic Wave Theory	
2.	A. Ishimaru, "Electromagnetic wave propagation, radiation and	2017
	scattering", IEEE Press Series on Electromagnetic Wave Theory	
3.	S. Khorasani, "Advanced electromagnetics and scattering theory",	2015
	Springer	
4.	I. Brener, S. Liu, I. Staude, J. Valentine, and C. Holloway,	2020
	"Dielectric Metamaterials: Fundamentals, Designs, and	
	Applications," Woodhead Publishing Series in Electronic and	
	Optical Materials	
5.	J. D. Jackson, "Classical Electrodynamics," John Wiley & Sons	1999
6.	D. J. Griffiths, "Introduction to Electrodynamics," Pearson	2013

NAME OF DEPARTMENT/CENTRE: Department of Electronics and Communication Engineering

T: 1

- Subject Code: ECN-503 1.
- 2. **Contact Hours: L:** 3
- **3.** Examination Duration (Hrs.): **Theory:** 3
- 4. Relative Weightage: CWS: 20-30 **PRS:** 0
- 5. Credits: 4 6. Semester: Autumn
- 8. Pre-requisite: Nil
- 9. Objective: To provide a brief knowledge on terahertz electronics.
- **10. Details of the Course:**

S.No.	. Contents	
		hours
1.	Introduction to Terahertz engineering: roadmap to Terahertz science and	3
	technologies, Terahertz interaction in molecular- and atomic-scale, applications in	
	wireless communication, defense, space, and smart devices.	
2.	Terahertz transmission lines and wave propagation: planar dielectric waveguides,	10
	multimodal dielectric guides, flexible polymer waveguides, ribbon waveguides,	
	Silicon-on-Insulator technology, dispersion in periodic structures, diffraction grating,	
	photonic and plasmonic waveguides, bandgap structures and dispersion.	
3.	Photonic-inspired Terahertz passive components: splitter, combiner, polarizer,	12
	isolator, diplexer, multiplexer and demultiplexers, directional couplers, grating	
	waveguide couples, open resonator design, Bragg reflector, tunable properties for	
	Terahertz devices using Graphene, liquid crystals, electrostatically actuated	
	cantilevers, and phase-change materials.	
4.	Terahertz sources and detectors: Terahertz pulse generation using photo-mixing	8
	and laser interferometry, overview of semiconductor technology, Terahertz power	
	generation in Silicon technology, working principle of HEMT and DHBT, Si-Ge HBT,	
	III–V/Schottky diode-based diode detectors, planar and spatial power combining	
	techniques, direct detection verses heterodyne detection, transistor detector circuits.	
	active and passive mode detection.	
5.	Selected applications using Terahertz: Terahertz time-domain spectroscopy (THz-	9
	TDS), Terahertz active and passive imaging, tomographic imaging. Terahertz sensing	
	and non-destructive testing.	
	Total	42

11. Suggested Books:

S.No.	Name of Authors/Book/Publisher	Year of Publication/ Reprint
1.	J.S. Rieh, "Introduction to Terahertz Electronics," Springer	2021
2.	R. E. Miles, P. Harrison, and D. Lippens, "Terahertz Sources and	2000
	Systems," NATO Science Series	
3.	P. F. Goldsmith, "Quasi-Optical Systems," IEEE Press Series	1998
4.	D. W. Woolard, W. R. Loerop, and M. S. Shur, "Terahertz Sensing	2003
	Technology," World Scientific	
5.	J. M. Chamberlain and R. E. Miles, "New Directions in Terahertz	1996
	Technology," NATO ASI Series	

MTE: 20-30 **ETE:** 40-60 **PRE:** 0

7. Subject Area: PCC

Course Title: Terahertz Electronics

P: 0

Practical: 0

NAME OF DEPARTMENT/CENTRE: Department of Electronics and Communication Engineering

- 1. Subject Code: ECN-511 Course Title: Linear Algebra and Random Processes
- **2. Contact Hours:** L: 3 T: 1 P: 0
- **3. Examination Duration (Hrs.):** Theory: 3 Practical: 0
- **4. Relative Weightage: CWS:** 20-35 **PRS:** 0 **MTE:** 20-30 **ETE:** 40-50 **PRE:** 0
- 5. Credits: 46. Semester: Autumn7. Subject Area: PCC
- 8. Pre-requisite: Nil
- **9. Objective:** To introduce the students to the theory and applications of linear algebra, random variables and random processes.

10. Details of the Course:

S.No.	o. Contents	
		hours
1.	Vector spaces, subspaces, bases and dimensions, linear dependence and independence,	10
	vector products, orthogonal bases and orthogonal projections, Gram-Schmidt ortho	
	normalization procedure	
2.	Linear operators and Matrices: Eigen values and Eigen vectors, characteristic	10
	polynomial, diagonalization, Hermitian and unitary matrices, singular value	
	decomposition	
3.	Discrete and continuous random variables: distribution and density functions,	10
	conditional distributions and expectations, functions of random variables, moments,	
	sequence of random variables	
4.	Random process: Probabilistic structure; Mean, auto correlation and auto covariance	12
	functions; Strict-sense and wide-sense stationary processes; Power spectral density;	
	LTI systems with WSS process as the input; Examples of random processes - white	
	noise, Gaussian, Poisson and Markov Processes	
	Total	42

S No	Nome of Authons/Deels/Dublisher	Year of
5.INU.	Name of Authors/Dook/Fublisher	Publication/ Reprint
1.	S.Axler, "Linear Algebra Done Right", 3 rd Edn., Springer International	2015
	Publishing.	
2.	G.Strang, "Linear Algebra and Its Applications", 4th Edn., Cengage	2007
	Learning.	
3.	K.M. Hoffinan and R. Kunze, "Linear Algebra", 2 nd Edn., Prentice Hall	2015
	India.	
4.	A. Papoulis and S. Pillai, "Probability, Random Variables and Stochastic	2017
	Processes", 4 th Edn., McGraw Hill.	
5.	H. Stark and J.W. Woods, "Probability and Random Processes with	2001
	Applications to Signal Processing", 3rd Edn., Pearson India.	
6.	A. Leon-Garcia, "Probability, Statistics and Random Processes for	2008
	Electrical Engineers", 3 rd Edn., Prentice Hall India.	

NAME OF DEPARTMENT/CENTRE: Department of Electronics and Communication Engineering

1.	Subject Code: ECN-51	ECN-519 Course Title: Wireless Communication Systems				
2.	Contact Hours:	L: 3	T: 1	P: 0		
3.	Examination Duration	n (Hrs.): The	ory: 3	Practical: 0		
4.	Relative Weightage:	CWS: 20-35	PRS: 0	MTE: 20-30	ETE: 40-50	PRE: 0
5.	Credits: 4	6. Semester	: Autumn	7. Subje	ect Area: PCC	

- 8. Pre-requisite: Nil.
- **9. Objective:** To acquaint the students with the concepts and the issues involved in the design of wireless communication systems.

10. Details of the Course

S.No.	Contents	Contact hours	
1.	Wired (AWGN) Channel and its BER analysis; Wireless channels: Physical		
	modeling, input/output model, Rayleigh channel and its BER analysis, time and frequency coherence, statistical channel models		
2.	2. Point-to-point communication: Detection in a Rayleigh fading channel, diversity techniques, channel uncertainty and estimation		
3.	3. Cellular systems: Multiple access and interference management, narrow-band and wide-band systems		
4.	Capacity of wireless channels, MIMO capacity, Diversity-multiplexing tradeoff, MIMO receiver design, Transmit power allocation, MIMO precoding, Space-time block codes	12	
5.	Multi-carrier communication, OFDM and its application to wireless communication: Subcarrier mapping, synchronization, PAPR reduction techniques	8	
6.	Non-orthogonal Multiple-Access: Introduction and motivation, System model, successive interference cancellation, outage probability analysis, Uplink and downlink NOMA system, Capacity analysis	6	
	Total	42	

S.No.	Name of Authors/Book/Publisher	Year of
		Publication / Reprint
1.	D. Tse and P. Viswanath, "Fundamentals of Wireless	2005
	Communication", 2005 Cambridge University Press.	
2.	Y. Li and G.L. Stuber, "Orthogonal Frequency Division Multiplexing	2006
	for 2006 Wireless Communications", Springer.	
3.	Y.S. Cho, J. Kim, W.Y. Yang and C.G. Kang, "MIMO-OFDM	2010
	Wireless 2010 Communications with MATLAB", John Wiley &	
	Sons.	

4.	"5G Mobile and Wireless Communications Technology", A. Osseiran, IF. 2016 Monserrat and P. Marsch (eds.), Cambridge University	2016
	Press.	
5.	A. Goldsmith, "Wireless Communications", Cambridge University	2012
	Press.	
6.	Yuanwei Liu, Zhijin Qin, Zhiguo Ding, ``Non-Orthogonal Multiple	2020
	Access for Massive Connectivity", Springer.	

NAME OF DEPARTMENT/CENTRE: Department of Electronics and Communication Engineering

- 1. Subject Code: ECN-502 Course Title: High Frequency Measurements and Instrumentation
- **2. Contact Hours:** L: 3 T: 1 P: 0
- **3. Examination Duration (Hrs.):** Theory: 3 Practical: 0
- **4. Relative Weightage: CWS:** 20-30 **PRS:** 0 **MTE:** 20-30 **ETE:** 40-60 **PRE:** 0
- 5. Credits: 46. Semester: Both7. Subject Area: PEC
- 8. Pre-requisite: Nil
- **9. Objective:** To introduce state-of-art and modern industrial measurement techniques with their associated instrumentation for characterization of microwave systems and circuits.

S.No.	Contents	
1	Calibration techniques: definition and need for calibration power measurements	Q
1.	and calibrations in calorimeter, bolometer, thermistor and diode sensors, on-chip)
	and off-chip calibration methodology open-short-load-thru and through-reflect-line	
	protocols free-space calibration time-domain calibrations reflectometer	
2	Wayequide instrumentation and nackaging: coaxial cables coaxial connectors	9
2.	and adaptors flexible dielectric waveguides channel capacity in straight and bent	
	waveguides Beatty-Standard waveguide rotary joints radial power combiners	
	water-probes planar circuit transition to water-probes and metal waveguides chip-	
	to-package wire bonding and flip-chip.	
3	Material spectroscopy: electromagnetic properties of matter. Lorentz, Drude and	9
5.	Debye model, dipole rotation and polarizability, electromagnetic interaction of	-
	water and biosensors, reflection-based material characterization. Nicolson–Ross–	
	Weir algorithm, resonator perturbations, Gaussian wavefront and Fabry-Perot	
	resonators, terahertz time-domain spectroscopy (THz-TDS).	
4.	Antenna measurements: anechoic chamber instrumentation, compact antenna test	8
	range, uncertainty and errors in radiation pattern measurements, phase center,	
	estimation of gain and directivity, Wheeler cap-based antenna efficiency, probe-	
	based antenna measurements, phased-array in-situ calibration, electromagnetic	
	scattering measurements.	
5.	Active and non-linear measurement systems: challenges of non-linear	7
	characterization, introduction to X-parameters, active load-pull measurement	
	system, multi-tone intermodulation measurements, error-vector-magnitude, excess	
	noise figure measurements, phase noise measurement techniques.	
	Total	42

S.No.	Name of Authors/Book/Publisher	Year of
		Publication/ Reprint
1.	G. H. Bryant, "Principles of microwave measurements", IET Electrical	1993
	Measurement Series, volume 5	
2.	L. F. Chen, C. K. Ong and C. P. Neo, V. V. Varadan and V. K. Varadan,	2004
	"Microwave Electronics: Measurement and Materials	
	Characterization", John Wiley & Sons	
3.	R.J. Collier and A.D. Skinner, "Microwave Measurements", IET	2007
	Electrical Measurement Series, volume 4	
4	C. Parini, S. Gregson, J. McCormick and D. J. van Rensburg, "Theory	2015
	and Practice of Modern Antenna Range Measurements", IET	
	Electromagnetic Wave Series, volume 55	
5	P. C. L. Yip "High Frequency Circuit Design and Measurements,"	1995
	Chapman & Hall	

NAME OF DEPARTMENT/CENTRE: Department of Electronics and Communication Engineering

- **1.** Subject Code: ECN-514Course Title: Detection and Estimation Theory
- **2. Contact Hours:** L: 3 **T**: 1 **P**: 0
- **3. Examination Duration (Hrs.):** Theory: 3 Practical: 0
- **4. Relative Weightage: CWS:** 20-35 **PRS:** 0 **MTE:** 20-30 **ETE:** 40-50 **PRE:** 0
- 5. Credits: 4 6. Semester: Both
- 8. Pre-requisite: Nil
- **9. Objective:** To acquaint the students of Communication Engineering with the knowledge of how to use the tools of probability and signal processing to estimate signals and parameters and detect events from data.

7. Subject Area: PEC

10. Details of the Course:

S.No.	Contents	Contact
		hours
1.	Introduction to detection and estimation problem in signal processing and communication	2
2.	Estimation in signal processing; Sufficient statistic, Bias; Minimum variance unbiased estimator; Cramer-Rao lower bound; Best linear unbiased estimator; Maximum likelihood estimation (MLE)	9
3.	Bayesian Estimation – Minimum mean square-error (MMSE) estimators, Maximum a-posteriori (MAP) estimators; Linear MMSE estimation, Linear estimation of signals, Weiner filtering; Kalman filtering – Kalman estimation and tracking	9
4.	Detection theory in signal processing; Hypothesis test – Bayesian, Minimax Neyman- Pearson and composite hypothesis testing; Receiver operating characteristics	8
5.	Detection of deterministic signals with known parameters in Gaussian noise, Matched filters; Detection of random signals with known characteristics, Estimator-correlator; Detection of deterministic signals with unknown parameters, Bayesian approach and generalized likelihood ratio test (GLRT); Detection of random signals with unknown parameters; Expectation maximization; Hidden Markov Model (HMM)	12
6.	Applications of detection and estimation in signal processing and communication – biomedicine, communications, radar, sonar, etc	2
	Total	42

S No	Name of Authors/Rook/Dublisher	Year of
5.110.	Name of Authors/Dook/Tublisher	Publication/ Reprint
1.	S.M. Kay, "Fundamentals of Statistical Signal Processing – Estimation	2009
	Theory (vol. 1)", Prentice Hall.	
2.	S.M. Kay, "Fundamentals of Statistical Signal Processing – Detection	2009
	Theory (vol. 2)", Prentice Hall.	
3.	H.L. Van Trees, "Detection, Estimation and Modulation Theory", Part I,	2013
	Wiley Interscience.	
4.	H. Vincent Poor, "An Introduction to Signal Detection and Estimation",	1998
	2 nd Edn., Springer.	
5.	K.S. Shanmugan and A.M. Breipohl, "Random Signals: Detection,	2010
	Estimation and Data Analysis", Wiley.	

NAME OF DEPARTMENT/CENTRE: Department of Electronics and Communication Engineering

1.	Subject Code: ECN-554		Course Title: Microwave and Millimeter-Wave Circuit			
2.	Contact Hours:	L: 3		T: 1	P: 0	
3.	. Examination Duration (Hrs.):		Theory: 3	Practical: 0		
4.	Relative Weightage:	CWS: 20-35	PRS: 0	MTE: 20-30	ETE: 40-50	PRE: 0
5.	. Credits: 4 6. Semo		nester: Both	7. Subject Area: PEC		EC

- 8. Pre-requisite: Nil
- **9. Objective:** To provide an in-depth treatment of the theory of different types of transmission line structures and their applications for the development of integrated circuits at microwave and millimeter wave frequencies.

10. Details of the Course:

S.No.	Contents	Contact
		Hours
1.	Fundamental Concepts: Elements of microwave/millimeter wave integrated circuits; Classification of transmission lines: Planar, quasi-planar and 3-D structures, their basic properties, field distribution and range of applications; Substrate materials and technology used for fabrication.	5
2.	Analysis of Planar Transmission Lines: Variational approach for the determination of capacitance of planar structures; Transverse transmission line techniques for multi-dielectric planar structures; Rigorous analysis of dielectric integrated guides; Use of effective dielectric constant in the approximate analysis of dielectric guide.	12
3.	Metamaterials: Theory of Composite Right/Left Handed (CRLH) transmission line metamaterials; Representation of CRLH metamaterial by an equivalent homogeneous CRLH TL; L-C network implementation and its physical realization.	6
4.	Discontinuities: Analysis of discontinuities in planar and non-planar transmission lines and their equivalent circuit representation.	5
5.	Passive Circuits: Design and circuit realization of filters, couplers, phase shifters, and switches using planar and non-planar transmission lines.	8
6.	Active Circuits: Design and circuit realization of amplifiers and oscillators using planar and non-planar transmission lines.	6
	Total	42

S.No.	Name of Authors/Book/Publisher	Year of
		Publication/ Reprint
1.	Edwards, T.C. and Steer M.B., "Foundations for Interconnects and Microstrip Design", 3 rd Ed., John Wiley & Sons.	2001
2.	Wolf, I., "Coplanar Microwave Integrated Circuits", John Wiley & Sons.	2006
3.	Bhat, B. and Koul, S.K., "Stripline Like Transmission Lines", John Wiley & Sons.	1989

4.	Caloz, C. and Itoh, T., "Electromagnetic Metamaterials: Transmission	2005
	Line Theory and Microwave Applications", Wiley-IEEE Press.	
5.	Bhat, B. and Koul, S. K., "Analysis, Design and Applications of	1987
	Finlines", Artech House.	
6.	Koul, S.K., "Millimeter Wave and Optical Dielectric Integrated Guides	1997
	and Circuits", John Wiley & Sons.	
7.	Ludwig, R. and Bretchko, P., "RF Circuit Design", Pearson	2000
	Education.	

NAME OF DEPARTMENT/CENTRE: Department of Electronics and Communication Engineering

1.	Subject Code: ECN-6	Course Title: Terahertz Communication Systems				
2.	Contact Hours:	L: 3		T: 1	P: 0	
3.	. Examination Duration (Hrs.):		Theory: 3		Practical: 0	
4.	Relative Weightage:	CWS: 20-35	PRS: 0	MTE: 20-30	ETE: 40-50	PRE: 0
5.	Credits: 4	6. Semester:	Both	7. Subject Area: PEC		
~						

- 8. Pre-requisite: Nil
- **9. Objective:** To expose the students with advanced concepts for analyzing and designing next-generation wireless systems operating at THz frequency bands.

10. Details of the Course:

S.No.	Contents	Contact
		Hours
1.	Wireless fundamentals: Evolution, Mathematical representation of wireless	6
	systems, Channel characteristics, Multi-antenna systems, Multi-carrier modulation	
	schemes	
2.	Sub-6 GHz and mmWave wireless systems: Motivation and system model, time	6
	and frequency division duplexing, uplink and downlink transmissions, benefits and	
	challenges, relevance in 5G and beyond 5G systems, spectral and energy efficiency	
3.	THz communication: Motivation, Differences between microwave, mmWave and	6
	THZ communication, propagation and characteristics, power consumption, multi-	
	antenna signal processing, Applications of THz	
4.	Channel models: MIMO and massive MIMO channel modeling, spatial channel	4
	models, 3GPP channel models, mmWave channel models, Terahertz Channel Model	
5.	Baseband signal processing: Channel estimation, pilot assignment, estimating	8
	direction of arrivals and departures, Signal detection techniques, hardware	
	impairments	
6.	Beamforming: Beamforming fundamentals, Analog, Digital and Hybrid	6
	beamforming architectures, Codebook and non-codebook based beamforming	
	techniques and algorithms	
7.	THz Modulation schemes and waveform design, Co-existence of THz with 6G	6
	technology, Application of THz communication	
	Total	42

S.No.	Name of Authors/Book/Publisher	Year of Publication/ Reprint
1.	T. Marzetta, E. Larsson, H. Yang, and H Ngo, "Fundamentals of Massive MIMO. Cambridge", Cambridge University Press, 2016.	2016
2.	E. Björnson, J. Hoydis and L. Sanguinetti, "Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency", Foundations and Trends in Signal Processing: Vol. 11, No. 3-4, pp 154–655, (2017).	2017
3.	D. Tse and P. Viswanath, "Fundamentals of Wireless Communication", Cambridge University Press.	2005
4.	Saim Ghafoor, Mubashir Husain Rehmani, Alan Davy, ``Next Generation Wireless Terahertz Communication Networks'', CRC Press	2021

NAME OF DEPARTMENT/CENTRE: Department of Electronics and Communication Engineering

- Subject Code: ECN-603 Course Title: Millimeter-Wave and Terahertz Antenna Design 1. 2. **Contact Hours: L:** 3 **T:** 1 **P:** 0 **Theory:** 3 **3.** Examination Duration (Hrs.): **Practical:** 0 **Relative Weightage: CWS:** 20-35 4. **PRS:** 0 **MTE:** 20-30 **ETE:** 40-50 **PRE:** 0 5. Credits: 4 6. Semester: Both 7. Subject Area: PEC
- 8. Pre-requisite: Nil
- 9. Objective: This course provides a foundation for millimeter-wave and terahertz antenna design.

10. Details of the Course:

S.No.	Contents	Contact
		hours
1.	Introduction to antenna engineering: Antenna Parameters, Basic antenna types, their	6
	working principle and radiation mechanism	
2.	Antenna Arrays: N-element Linear array, Broadside array, End fire Array, Planar	8
	Array and its design considerations	
3.	Phased array and beamforming: Power Dividers, Couplers and Hybrids, Butler	8
	Matrix, Rotmen Lens and different beamforming techniques	
4.	Reconfigurable antenna technologies: working principle of active and non-linear	6
	semiconductor devices, varactor diode, pin-diode, Schottky diode, MEMS technology,	
	liquid crystal technology, example of pattern, frequency and polarization	
	reconfigurablity	
5.	Massive MIMO Antenna Systems: Concept of Massive MIMO, Design and its	4
	applications	
6.	Integrated antenna design and packaging: Packaging Technologies, Additive	5
	Manufacturing AiP Designs and Applications, 3D AiP for Power Transfer, Sensor	
	Nodes, and IoT Applications	
7.	Application-oriented antennas for mm-wave and terahertz frequency: leaky-wave	5
	antennas, waveguide slotted array, radio telescope system, case-study of Event Horizon	
	Telescope, antenna system for cellular base stations, MIMO antenna topology, antennas	
	for automotive radar.	
	Total	42

S.No.	Name of Authors/Book/Publisher	Year of
		Publication/ Reprint
1.	Constantine A. Balanis, "Antenna Theory: Analysis and Design," 4 th	2016
	Edition, Wiley	
2.	D. Liu, B. Gaucher, U. Pfeiffer, and J. Grzyb, "Advanced Millimeter-Wave	2009
	Technologies," Wiley	
3.	Z. N. Chen, "Handbook of Antenna Technologies," Springer	2015
4.	Duixian Liu; Yueping Zhang, "Antenna-in-Package Technology and	2020
	Applications," Wiley IEEE Press	
5.	A. Boriskin and R. Sauleau, "Aperture Antennas for Millimeter and Sub-	2018
	Millimeter Wave Applications," Springer	

NAME OF DEPARTMENT/CENTRE: Department of Electronics and Communication Engineering

1.	Subject Code: ECN-604 Co			urse Title: High Speed Semiconductor Devices		
2.	Contact Hours:	L: 3		T: 1	P: 0	
3.	Examination Duration (Hrs.):		Theory: 3		Practical: 0	
4.	Relative Weightage:	CWS: 20-35	PRS: 0	MTE: 20-30	ETE: 40-50	PRE: 0
5.	Credits: 4	6. Semester: Both		7. Subject Area: PEC		С

- 8. Pre-requisite: Nil
- **9. Objective:** This course will provide a thorough understanding high speed electronic devices used in advanced communication systems, smart electronic gadgets, defense and space applications.

S.No.	Contents		
1			
1.	Introduction : History and overview of high speed electronics; RF, mm-wave and THz frequency bands; requirements of high speed semiconductor devices	2	
2	Dependence governing the high gread nonformance of a devices.	5	
۷.	dening concentration; temperature; charge corrier transit time; junction concentration;	3	
	on state resistences and their dependence on the device connectmy context resistences.		
	interconnect capacitances in ICs and MMICs		
3.	Materials for high speed devices: brief revision of the crystal structure: carrier	4	
5.	mobility and saturation velocity of different semiconductor materials: Comparison of		
	III-V binary and ternary semiconductors such as GaN. (Al/In) GaAs. InP and SiGe		
	with Si: Baliga High Frequency Figure of Merit (BHFM) and Johnson figure of merit		
	(JFOM).		
4.	High-speed diodes: Metal semiconductor contacts and Schottky barrier diodes;	8	
	Thermionic Emission model; carrier transport in forward and reverse bias and their		
	dependence on different physical parameters; Effect of interface states on the Schottky		
	barrier height and the I-V characteristics; metal insulator semiconductor (MIS) diodes;		
	Gunn diodes and Tunnel diodes; RTD.		
5.	Field Effect Transistors (FETs): MOSFET and MESFET; Pinch-off voltage and	8	
	threshold voltage of a MESFET; MESFET I-V characteristics; velocity overshoot		
	effects; GaAs, InP and GaN based high speed FETs; short channel effects.		
6.	High Electron Mobility Transistors (HEMTs): concept of Hetero-structures;		
	Modulation Doped FETs (MODFETs) for high electron mobility; working principle of	5	
	polar and non-polar HEMTs; InGaAs/InP HEMT; AlGaN/GaN HEMTs and emerging		
	HEMT devices.		
7	Bipolar Junction transistors (BJTs): Merits of BJTs over FETs; hetero-junction	4	
	bipolar transistors (HBTs) and their working principle; GaAs and InP based HBTs;		
	SiGe HBTs and the concept of strained layer devices.		
8	Selected high speed circuits: basics of RF power amplifiers, local oscillators and	6	
	mixers; monolithic microwave integrated circuits; concepts of RF energy harvesting		
	circuits.	40	
	Total	42	

S.No.	Name of Authors/Book/Publisher	Year of Publication/ Reprint
1.	Ben G. Streetman and Sanjay K. Banerjee, "Solid State Electronic	2015
	Devices," Pearson Education India Pvt. Ltd.	
2.	S. M. Sze and Kwok K. Ng, "Physics of Semiconductor Devices," Wiley	2008
3.	Peter Ashburn, "SiGe Heterojuntion Bipolar Transistor," Wiley	2003
4.	Behrat Razavi, "RF Microelectronics," Pearson	2011
5.	Marian K. Kazimierczuk, "RF Power Amplifiers," Wiley.	2014

NAME OF DEPARTMENT/CENTRE: Department of Electronics and Communication Engineering

- **1.** Subject Code: ECN-605Course Title: Surface Electromagnetics
- 2. Contact Hours:
 L: 3
 T: 1
 P: 0

 3. Examination Duration (Hrs.):
 Theory: 3
 Practical: 0

 4. Relative Weightage:
 CWS: 20-35
 PRS: 0
 MTE: 20-30
 ETE: 40-50
 PRE: 0
- 5. Credits: 46. Semester: Both7. Subject Area: PEC
- 8. Pre-requisite: Nil
- 9. Objective: To gain insight into the electromagnetics of wave-surface interaction.

S.No.	Contents	
		Hours
1.	Introduction to Surface Electromagnetics: Maxwell equations, Classical Uniform	8
	EM Surfaces, Surface Equivalence Theorem, Features of Periodic EM Surfaces,	
	Frequency Selective Surface, Soft/Hard Surface, Electromagnetic Bandgap Surface.	0
2.	Analytical Modeling of Electromagnetic Surfaces: concept of unit cell, Main	8
	Functionalities of Metasurfaces, Metasurfaces versus Thin Slabs of Homogeneous	
	Materials and Other Artificial Periodic Surfaces, Quasi-periodic Structures,	
	Homogenization Models of Metasurfaces: Polarizability-Based Model, Susceptibility-	
	Based Model, Model Based on Equivalent Impedance Matrix, Bi-anisotropy and	
	Nonreciprocity.	
3.	Electromagnetic Metasurface: Metasurface Boundary Conditions, Impedance-Type	10
	Boundary Conditions, Conditions of Reciprocity, Passivity, and Loss, Synthesis	
	Procedure, Relation with Scattering Parameters, Negative Refraction Metasurface,	
	Metafilms, Metascreens, Metagratings, Guided Waves on a Single Metasurface,	
	Controllable Reflections and Transmissions, Coding and Programmable	
	Metasurfaces, Non-uniqueness of the Scattering Problem: Non-radiating Sources and	
	Cloaking Devices, Cloaking Design with Mie Solutions, Cloaking Design with Non-	
	radiating Sources, Control of Wave Propagation Direction in Transmission and	
	Reflection, Control of Polarization in Reflection and Reflection.	
4.	Modulated Metasurface Antennas and Transmitarray: Adiabatic Floquet Waves,	4
	Pixel Modeling, Full-Wave Homogenized Impedance Analysis, Efficiency of	
	Metasurface Antennas, FSS-Type Reconfigurable Design, Concept and Design	
	Procedure of Transmit array Antennas, Example of Multibeam Modulated	
	Metasurface Antennas.	
5.	Orbital Angular Momentum Beam Generation Using Textured Surfaces: Bessel-	4
	Gaussian Beams, Laguerre-Gaussian (Helical) Beams, OAM Beams, Near-Field	
	Applications of OAM Beams, Potential Far-Field Applications of OAM Beams, OAM	
	Beam Generation Using Reflectarray Antennas.	
6.	Applications of Metasurfaces in the Microwave to Terahertz Regime: Ultrathin	8
	Electromagnetic Absorbers, Artificial Grounds for Low-Profile Antennas, Antenna	
	Superstrates and Coatings, Modulated Metasurfaces for Leaky Wave Radiation,	
	Scattering Signature Control, Recent Developments in Terahertz Metasurface and	
	Metamaterial Technology, Holography.	
	Total	42

S.No.	Name of Authors/Book/Publisher	Year of Publication/ Reprint
1.	DKCheng, "Field and Wave Electromagnetics," Pearson Education	2006
2.	F. Yang and Y. RSamii, "Surface Electromagnetics," Cambridge	2019
	University Press	
3.	S. I. Bozhevolnyi, P. Genevet, and F. Ding, "Metasurface: Physics and	2018
	Application," MDPI	
4.	N. Engheta and R. W. Ziolkowski, "Metamaterials: Physics and	2006
	Engineering Explorations," IEEE Press	
5.	C. Caloz and K. Achouri, "Electromagnetic Metasurface: Theory and	2021
	Applications," Wiley	

NAME OF DEPARTMENT/CENTRE: Department of Electronics and Communication Engineering

- 1. Subject Code: ECN-606
 Course Title: High-Frequency Dielectric Guides
- **2. Contact Hours: L**: 3 **T**: 1 **P**: 0
- **3. Examination Duration (Hrs.):** Theory: 3 Practical: 0
- **4. Relative Weightage: CWS:** 20-35 **PRS:** 0 **MTE:** 20-30 **ETE:** 40-50 **PRE:** 0
- 5. Credits: 46. Semester: Both7. Subject Area: PEC
- 8. Pre-requisite: Nil
- 9. Objective: To provide in-depth knowledge on the topic of dielectric guides.

S.No.	. Contents	
1.	Fundamentals of electromagnetic fields: Maxwell equations, wave equation, boundary conditions, radiation condition, phase and group velocity, constitutive relations, concept of anisotropy.	8
2.	Planar dielectric waveguides: slow wave propagation in dielectric waveguides, TE and TM modes, geometrical loss factor, dispersion relations, Marcatili's approximate method, approximate solution for a rectangular dielectric waveguide, leaky modes along an asymmetric dielectric waveguide, multi-layered dielectric slab waveguides, Sommerfeld–Zenneck surface impedance waveguide.	8
3.	Circular and elliptical waveguides: hybrid modes in rod waveguide, dispersion relations, cut-off conditions, hollow dielectric rod waveguides, even-dominant modes, odd-dominant modes, Sommerfeld–Goubau Wire.	6
4.	Photonic crystal waveguides: guided waves in periodic structures, stop-band and pass-band structures, concept of Bragg reflector and band-gap design, dielectric waveguide array	4
5.	Circuit development using dielectric guides: coupled mode theory, directional couplers and power dividers using dielectric guides, signal distortion in dielectric guides, inter-modal dispersion, channel capacity, excitation of dielectric guides on a planar platform, low-loss terahertz ribbon waveguide, bending of dielectric guides, leaky-wave antenna design on dielectric guides, on-chip fabrication techniques for dielectric guides.	8
6.	Dielectric resonators: natural modes of dielectric bodies, hybrid modes in rectangular and cylindrical dielectric resonators, whispering gallery modes, concept of dielectric resonator antenna, dielectric ring resonator.	8
	Total	42

S.No.	Name of Authors/Book/Publisher	Year of Publication/ Reprint
1.	C. Yeh and F. I. Shimabukuro, "The Essence of Dielectric Waveguides,"	2008
	Springer	
2.	S. K. Koul, "Millimeter Wave Optical Dielectric Integrated Guides and	1997
	Circuits," Wiley Series in Microwave and Optical Engineering	
3.	D. Marcuse, "Theory of Dielectric Optical Waveguides," Academic	1991
	Press	
4.	D. Lioubtchenko, S. Tretyakov, S. Dudorov, "Millimeter-Wave	2003
	Waveguides," Springer	
5.	Y. Shestopalov, Y. Smirnov, E. Smolkin, "Optical Waveguide Theory:	2022
	Mathematical Models, Spectral Theory and Numerical Analysis,"	
	Springer Series in Optical Sciences	

NAME OF DEPARTMENT/CENTRE: Department of Electronics and Communication Engineering

- **Course Title:** Terahertz Sensing and Imaging 1. Subject Code: ECN-607 2. **Contact Hours: L:** 3 **T:** 1 **P:** 0 **3.** Examination Duration (Hrs.): **Theory:** 3 **Practical:** 0 **Relative Weightage: CWS:** 20-35 **PRS:** 0 **MTE:** 20-30 **ETE:** 40-50 4. **PRE:** 0 5. Credits: 4 6. Semester: Both 7. Subject Area: PEC
- 8. Pre-requisite: Nil
- 9. Objective: To provide knowledge on Terahertz Sensing and Imaging Technology.

10. Details of the Course:

S.No.	Contents	Contact Hours
1.	Transmission and propagation of terahertz waves in waveguides: Introduction, Main challenges of the plastic-based terahertz fiber optics, Devices based on subwavelength fibers. Hollow-core fibers. Composite terahertz materials	8
2.	Fundamental aspects of surface plasmon polaritons at terahertz frequencies : Introduction, The Drude model, Surface plasmon polaritons on planar surfaces, Multilayered structures, New trends in terahertz plasmonics	6
3.	Fundamental aspects of terahertz near-field imaging and sensing: Introduction, Terahertz near-field measurements, Near-fields of various subwavelength holes, Kirchhoff formalism for near-field estimate	6
4.	Terahertz bio-sensing techniques: Introduction, Sensing of water dynamics by terahertz waves, Sensing of proteins, Binding-state dependent sensing, Characteristic resonances of biomolecules in the terahertz range, Water-mediated terahertz molecular imaging	6
5.	Terahertz integrated devices and systems: Introduction, Integrated terahertz biosensor chip, Terahertz oscillators integrated with patch antennas, discussion on resonant tunneling diodes	8
6.	Applications of terahertz technology: Terahertz applications in the aerospace industry, Terahertz applications in the wood products industry, Terahertz applications in art conservation Applications of terahertz technology in the semiconductor industry	8
	Total	42

S.No.	Name of Authors/Book/Publisher	Year of Publication/ Reprint
1.	Dwight L. Woolard, William R. Loerop, Michael Shur, "Terahertz Sensing	2004
	Technology: Electronic Devices and Advanced Systems Technology,"	
	World Scientific Publishing Company	
2.	Daryoosh Saeedkia, "Handbook of terahertz technology for imaging,	2013
	sensing and communications," Woodhead Publishing	
3.	Daniel R. Grischkowsky, "Daniel Mittleman, Sensing with Terahertz	2003
	Radiation," Springer	
4.	Joo-Hiuk Son, "Terahertz Biomedical Science and Technology," CRC	2014
	Press	

NAME OF DEPARTMENT/CENTRE: Department of Electronics and Communication Engineering

1.	Subject Code: ECN-6	522	Course Tit	le: Nonionizing Ra	adiations and Health	Risks
2.	Contact Hours:	L: 3	T: 1	P: 0		
3.	Examination Duration	on (Hrs.):	Theory: 3	Practical: 0		
4.	Relative Weightage:	CWS: 20-35	PRS: 0	MTE: 20-30	ETE: 40-50	PRE: 0
5.	Credits: 4	6. Seme	ester: Spring	7. Su	ıbject Area: PEC	

- 8. Pre-requisite: Nil.
- **9. Objective:** To introduce mechanism and effect of interaction of electromagnetic energy with biological systems

S.No.	Contents	Contact
		hours
1.	Introduction: Fundamentals of electromagnetics- Electromagnetics,	8
	RF/Microwave energy, Penetration in Biological tissues and skin effect,	
	Dielectric measurements and exposure; Environmental electromagnetic field and	
	Bio-systems	
2.	Electromagnetic Interaction Mechanism in Biological Materials:	6
	Bioelectricity, Tissue characterization, Thermodynamics and energy	
3.	Biological Effects: Absorption - Fundamentals, Dosimetry and SAR, Thermal	8
	considerations; Nervous Systems- Effect on brain and spinal cord, blood brain	
	barrier, nervous system modelling and simulations; Cells and membranes;	
	Molecular level; Low level exposure and ELF components; Ear, Eye and heart;	
	Influence on drugs; Nonthermal, Microthermal and Isothermal effects;	
	Epidemiology studies; Interferences; radiation hazards and exposure standards	
4.	Thermal Therapy: Heating principle, hyperthermia, method of thermometry-	6
	invasive and non-invasive	
5.	Protection of Biological and medical Environments: Concept of e.m. wave	6
	absorbers- classification, fundamental principles and theory, applications, e.m.	
	wave absorbers using equivalent transformation method of material constant,	
	method to improve e.m. field distribution in small room	
6.	Electromagnetic Delivery Systems for Therapeutic applications: transmission	8
	lines and waveguides for medical applications; antennas; RF/Microwave ablation,	
	Perfusion chamber, Endometrial ablation, E. M. based method for measuring	
	blood perfusion in hear muscle, Lumen measurements of arteries using RF	
	equipments, RF tissue Welding	
	Total	42

S.No.	Name of Authors/Book/Publisher	Year of
		Publication / Reprint
1.	C. Furse, C. and C. Durney, "Basic introduction to	2019
	Bioelectromagnetics", 2 nd Edition, CRC Press	
2.	K. Karipidis and A. W. Wood, "Non-ionizing Radiation Protection",	2017
	John Wiley & Sons	
3.	M. Gandolfo, "Biological Effects and Dosimetry of Nonionizing	2013
	Radiation: Radio Frequency and Microwave Energies", Springer	
4.	A. V. Vorst, A Rosen and Y Kotsuka, "RF/Microwave Interaction	2006
	with Biological Tissues", John Wiley & Sons	
5.	M Kato, "Electromagnetics in Biology", Springer	2006
6.	J Malmivuo and R Plonsey, "Bioelectromagnetism - Principles and	1995
	Applications of Bioelectric and Biomagnetic Fields", New York,	
	Oxford University Press	

NAME OF DEPARTMENT/CENTRE: Department of Electronics and Communication Engineering

- 1. Subject Code: ECN-637 **Course Title:** Microwave Photonic ICs **Contact Hours: L:** 3 **T:** 1 **P:** 0 2. **Examination Duration (Hrs.):** 3. **Theory:** 3 Practical: 0 Relative Weightage: CWS: 20-35 **PRS:** 0 **MTE:** 20-30 4. **ETE:** 40-50 **PRE:** 0 5. Credits: 4 6. Semester: Both 7. Subject Area: PEC
- 8. Pre-requisite: Nil
- 9. Objective: To provide advanced EM concepts for designing microwave photonics ICs.

S.No.	Contents	Contact Hours
1.	Introduction and review: Optical communications: short-reach, long-haul, and data centers communications, Economic drivers towards photonic integration, Interaction of optical waves with dielectric and metal interfaces, Boundary conditions, total internal reflection, Review of silicon PN-and PIN-junctions, Junction diode static and transient characteristics	4
2.	Fundamentals of Si photonics : Symmetric dielectric waveguides, Asymmetric dielectric waveguides, Rectangular waveguides, Computational methods for integrated photonics, Marcatilli's and effective index methods, Propagation matrix, finite difference time domain, eigenmode expansion, Design and fabrication of silicon waveguide structures, Waveguide loss, scattering, absorption, radiation, Adiabatic mode converters, Dispersion in optical waveguides, group delay, dispersion engineering	8
3.	Passive devices : Coupling to waveguide: edge, grating, evanescent coupling, spot-size converters, packaging solutions and economic/functional/power constraints, coupled mode theory, coupled optical waveguides, Power splitters, Mach-Zehnder interferometer, Cascaded MZI optical filters, Star couplers, Wavelength division multiplexing, Optical ring resonators, Add-drop multiplexers, Waveguide Bragg gratings, Polarization dependence and management, Waveguide polarization splitters and rotators, Optical isolation, Wavelength multiplexers figures of merit	8
4.	Transmitter active devices : Electro-optical effects in silicon, Thermal phase shifter, thermo-optic switch, Carrier-induced electro-optical effects, Carrier-Injection phase shifter, PN-junction carrier distribution, optical phase response, small signal response, Forward biased PIN junction variable optical attenuator, Micro-ring modulators and switches, small-signal response, ring modulator design, Carrier depletion phase shifter, PN-junction carrier distribution, optical phase response, small signal response, Traveling wave design of reverse-biased electro-optic modulator, Modulators for advanced modulation formats, Transmitter figures of merit	10
5.	Receiver active devices : Germanium photodetectors, Fabrication approaches, III- V integration with silicon photonics, Integrated photodetectors, lasers and amplifiers, Receiver figures of merit	4
6.	Photonic systems: Introduction to photonic systems for short-reach and long-haul optical communications, Modulation formats, receiver and transmitter characteristics, optical link budget, BER and penalties, Introduction to data center optical networks, Optical switching, Optical switches	3

7.	Emerging applications of Si photonics in quantum computing, neuromorphic	5
	computing, and biological sensing, Comparison of technological advantages and	
	businessmodels, State of silicon photonics industry, Skills and competencies	
	Total	42

S.No.	Name of Authors/Book/Publisher	Year of Publication/ Reprint
1.	A. Balanis, "Advanced Engineering Electromagnetics," Wiley	2012
2.	S. L. Chuang, "Physics of Photonic Devices, 2nd edition," Wiley	2009
3.	B. E. A. Saleh & M. C. Teich, "Fundamentals of Photonics," Wiley, 2nd edition (2007)	2007
4.	L. Coldren, S. Corzine, M.L. Mashanovitch, "Diode Lasers and Photonic Integrated Circuits," Wiley 2nd Edition (2012)	2012
5.	V. J. Urick, Keith J. Williams, Jason D. McKinney, "Fundamentalsof Microwave Photonics," Wiley	2015
6.	Chi H. Lee, "Microwave Photonics," Second Edition, CRC Press	2013
7.	Stavros Iezekiel, "Microwave photonics: devices and applications," Wiley	2009

NAME OF DEPARTMENT/CENTRE: Department of Electronics and Communication Engineering

- 1. Subject Code: ECN-618 Course Title: Wireless technologies: 5G and Beyond
- **2.** Contact Hours: L: 3 T: 1 P: 0
- **3.** Examination Duration (Hrs.): Theory: 3 Practical: 0
- **4. Relative Weightage: CWS:** 20-35 **PRS:** 0 **MTE:** 20-30 **ETE:** 40-50 **PRE:** 0
- 5. Credits: 4 6. Semester: Spring 7. Subject Area: PEC
- 8. Pre-requisite: Nil.
- **9. Objective:** The main objective of this course is to provide exposure to advanced research topics in the field of Beyond 5G/6G wireless systems.

10. Details of the Course

S.No.	Contents	
		hours
1.	5G NR Overview: Introduction and Motivation, Adaptive modulation and	6
	coding, Time-domain and frequency-domain frame structure, 5G NR	
	Numerology, Hybrid Automatic repeat request protocol	
2.	5G transmit and receive chain for data and control information: CRC,	8
	Transport block segmentation/concatenation, Rate matching/rate recovery,	
	Interleaving/deinterleaving	
3.	Cell-free/distributed wireless system: Introduction and Motivation, System	12
	model for uplink/downlink, Channel modelling, Channel estimation,	
	Beamforming techniques, Centralized/Decentralized uplink and downlink	
	operation, Capacity bounds and spectral efficiency	
4.	mmWave MIMO Wireless Systems: Introduction and motivation, millimeter	6
	wave propagation and channel models, Analog, Digital and Hybrid Processing,	
	Sparse channel estimation	
5.	Full-duplex future wireless system: Introduction and motivation, Self-	5
	interference cancellation, active/passive cancellation, FD massive MIMO system	
6.	Multi-hop massive MIMO communication: Introduction and motivation,	5
	Transmission model for amplify-and-forward and decode-and-forward protocols,	
	Multi-pair multi-hop communication, Capacity and asymptotic analysis	
	Total	42

S.No.	Name of Authors/Book/Publisher	Year of
		Publication / Reprint
1.	Erik Dahlman, Stefan Parkvall, Johan Skold, ``5G NR: The Next	2018
	Generation Wireless Access Technology", Academic Press	
2.	Sassan Ahmadi, ``5G NR: Architecture, Technology, Implementation,	2019
	and Operation of 3GPP New Radio Standards", Academic Press	
3.	Özlem Tugfe Demir, Emil Björnson and Luca Sanguinetti,	2021
	"Foundations of User-Centric Cell-Free Massive MIMO",	
	Foundations and Trends® in Signal Processing, Now publishers	

NAME OF DEPARTMENT/CENTRE: Department of Electronics and Communication Engineering

1.	Subject Code: ECN-620		Course Title: Advanced Wireless Communication			
2.	Contact Hours:	L: 3	T: 1	P: 0	1	
3.	Examination Duration	on (Hrs.):	Theory: 3	Practical: 0		
4.	Relative Weightage:	CWS: 20-35	PRS: 0	MTE: 20-30	ETE: 40-50	PRE: 0
5.	Credits: 4	6. Semo	ester: Spring	7. Su	ıbject Area: PEC	

- 8. Pre-requisite: Nil.
- 9. Objective: To acquaint the students with the advanced but essential concepts, techniques and algorithms needed for understanding and designing modern wireless communication systems.

S.No.	Contents	
1.	Introduction: Introduction to multiple-input multiple-output (MIMO) systems	4
	and its relevance, diversity-multiplexing trade-offs, single-user and multi-user	
	MIMO systems	
2.	Massive MIMO systems: Motivation and system model, time and frequency	6
	division duplexing, uplink and downlink transmissions, benefits and challenges,	
	relevance for the existing wireless standards, spectral and energy efficiency	
3.	Channel Models: MIMO and massive MIMO channel modeling, spatial channel	6
	models, 3GPP channel models, mmWave channel models	
4.	Receiver designing:	10
	• Channel estimation: sounding signals and estimation techniques, the issues of	
	pilot contamination, pilot assignment techniques, estimating direction of	
	arrivals and departures	
	• Signal detection: linear detectors like MF, ZF, and MMSE, non-linear detectors such	
	as ML, Sphere decoding, SIC, Neighborhood Search, and matching Pursuit algorithms,	
	Soft decoding	
5.	Beamforming: Beamforming fundamentals, Analog, Digital and Hybrid	4
	beamforming architectures, Beamforming techniques and algorithms such as	
	phase minimization etc, quantization effects.	
6.	Beam management: Beam sweeping, reference signals for beam management,	4
	Synchronization signals, beam measurement, determination and reporting	
7.	Potential advancements: Index modulation for massive MIMO systems,	4
	Extremely large aperture arrays, Heterogenous massive MIMO, Holographic/RIS	
	massive MIMO,	
8.	Deep/Machine Learning for Wireless Communication: Overview of DL/ML	4
	Modelling, Data set generation and acquisition, training the model. Example	
	problems like modulation design, channel estimation, signal detection etc.,	
	intelligent massive MIMO.	
	Total	42

S.No.	Name of Authors/Book/Publisher	Year of
		Publication / Reprint
1.	T. Marzetta, E. Larsson, H. Yang, and H Ngo, "Fundamentals of	2016
	Massive MIMO. Cambridge", Cambridge University Press, 2016.	
2.	A. Chockalingam and B. Rajan, "Large MIMO Systems", Cambridge	2014
	University Press, 2014.	
3.	E. Björnson, J. Hoydis and L. Sanguinetti, "Massive MIMO	2017
	Networks: Spectral, Energy, and Hardware Efficiency", Foundations	
	and Trends in Signal Processing: Vol. 11, No. 3-4, pp 154-655,	
	(2017).	
4.	D. Tse and P. Viswanath, "Fundamentals of Wireless	2005
	Communication", Cambridge University Press, 2 nd edition, 2005.	
5.	A. Goldsmith, "Wireless Communications", Cambridge University	2005
	Press, 2005.	